前言

在我们使用 Spring 时,可能有前辈教导过我们,在 bean 中不要使用 this 来调用被 @Async、@Transactional、@Cacheable 等注解标注的方法,this 下注解是不生效的。

那么大家可曾想过以下问题

  1. 为何致 this 调用的方法,注解会不生效

  2. 这些注解生效的原理又是什么

  3. 如果确实需要调用本类方法,且还需要注解生效,该怎么做?

  4. 代理是否可以做到 this 调用注解就直接生效?

现象

以 @Async 注解为例,@Async 注解标记的方法,在执行时会被 AOP 处理为异步调用,调用此方法处直接返回,@Async 标注的方法使用其他线程执行。

使用 Spring Boot 驱动

@SpringBootApplication
@EnableAsync
public class Starter {

    public static void main(String[] args) {
        SpringApplication.run(Starter.class, args);
    }
}

@Component
public class AsyncService {

    public void async1() {
        System.out.println("1:" + Thread.currentThread().getName());
        this.async2();
    }

    @Async
    public void async2() {
        System.out.println("2:" + Thread.currentThread().getName());
    }
}

@RunWith(SpringRunner.class) 
@SpringBootTest(classes = Starter.class)
public class BaseTest {

    @Autowired
    AsyncService asyncService;

    @Test
    public void testAsync() {
        asyncService.async1();
        asyncService.async2();
    }

}

输出内容为:

1:main
2:main
2:SimpleAsyncTaskExecutor-2

第一行第二行对应 async1 () 方法,第三行对应 async2 () 方法,可以看到直接使用 asyncService.async2 () 调用时使用的线程为 SimpleAsyncTaskExecutor,而在 async1 () 方法中使用 this 调用,结果却是主线程,原调用线程一致。这说明 @Async 在 this 调用时没有生效。

思考 & 猜测

已知对于 AOP 动态代理,非接口的类使用的是基于 CGLIB 的动态代理,而 CGLIB 的动态代理,是基于现有类创建一个子类,并实例化子类对象。在调用动态代理对象方法时,都是先调用子类方法,子类方法中使用方法增强 Advice 或者拦截器 MethodInterceptor 处理子类方法调用后,选择性的决定是否执行父类方法。

那么假设在调用 async1 方法时,使用的是动态生成的子类的实例,那么 this 其实是基于动态代理的子类实例对象,this 调用是可以被 Advice 或者 MethodInterceptor 等处理逻辑拦截的,那么为何理论和实际不同呢?

这里大胆推测一下,其实 async1 方法中的 this 不是动态代理的子类对象,而是原始的对象,故 this 调用无法通过动态代理来增强。

下面开始详细分析。

源码调试分析原理

首先要弄清楚 @Async 是如何生效的:

1. 分析 Async 相关组件

从生效入口开始看,@EnableAsync 注解上标注了 @Import (AsyncConfigurationSelector.class)

@Import 的作用是把后面的 @Configuration 类、ImportSelector 类或者 ImportBeanDefinitionRegistrar 类中 import 的内容自动注册到 ApplicationContext 中。关于这三种可 Import 的类,这里先不详细说明,有兴趣的读者可以自行去 Spring 官网查看文档或者等待我的后续文章。

这里导入了 AsyncConfigurationSelector,而 AsyncConfigurationSelector 在默认情况下,会选择出来 ProxyAsyncConfiguration 类进行导入,即把 ProxyAsyncConfiguration 类作为 @Configuration 类配置到 ApplicationContext 中。那么这里的关键就是 ProxyAsyncConfiguration 类,看代码

@Configuration
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
public class ProxyAsyncConfiguration extends AbstractAsyncConfiguration {

	@Bean(name = TaskManagementConfigUtils.ASYNC_ANNOTATION_PROCESSOR_BEAN_NAME)
	@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
	public AsyncAnnotationBeanPostProcessor asyncAdvisor() {
		Assert.notNull(this.enableAsync, "@EnableAsync annotation metadata was not injected");
		AsyncAnnotationBeanPostProcessor bpp = new AsyncAnnotationBeanPostProcessor();
		Class<? extends Annotation> customAsyncAnnotation = this.enableAsync.getClass("annotation");
		if (customAsyncAnnotation != AnnotationUtils.getDefaultValue(EnableAsync.class, "annotation")) {
			bpp.setAsyncAnnotationType(customAsyncAnnotation);
		}
		if (this.executor != null) {
			bpp.setExecutor(this.executor);
		}
		if (this.exceptionHandler != null) {
			bpp.setExceptionHandler(this.exceptionHandler);
		}
		bpp.setProxyTargetClass(this.enableAsync.getBoolean("proxyTargetClass"));
		bpp.setOrder(this.enableAsync.<Integer>getNumber("order"));
		return bpp;
	}

}

这段代码的作用是把 AsyncAnnotationBeanPostProcessor 作为 Bean 注册到 Context 中。那么核心就是把 AsyncAnnotationBeanPostProcessor 这个 BeanPostProcessor,也就是 Spring 大名鼎鼎的 BPP。

在一个 Bean 实例生成后,会交给 BPP 的 postProcessBeforeInitialization 方法进行加工,此时可以返回与此 Bean 相兼容的其他 Bean 实例,例如最常见的就是在这里返回原对象的动态代理对象。

在这个方法执行后,会调用 Bean 实例的 init 相关方法。调用的方法是 InitializingBean 接口的 afterPropertiesSet 方法,以及 @Bean 声明中 initMethod 指定的初始化方法。

在调用 init 方法之后,会调用 BPP 的 postProcessAfterInitialization 方法进行后置处理。此时处理同 postProcessBeforeInitialization,也可以替换原 bean 的实例。

我们看下这个 Async 相关的 BPP 做了什么操作:

// 潜质处理不做任何动作,可保证在调用bean的init之前,bean本身没有任何变化。
@Override
public Object postProcessBeforeInitialization(Object bean, String beanName) {
	return bean;
}

@Override
public Object postProcessAfterInitialization(Object bean, String beanName) {
    // 如果是AOP相关的基础组件bean,如ProxyProcessorSupport类及其子类,则直接返回。
	if (bean instanceof AopInfrastructureBean) {
		// Ignore AOP infrastructure such as scoped proxies.
		return bean;
	}

	if (bean instanceof Advised) {
	    // 如果已经是Advised的,即已经是被动态代理的实例,则直接添加advisor。
		Advised advised = (Advised) bean;
		if (!advised.isFrozen() && isEligible(AopUtils.getTargetClass(bean))) {
		    // 如果没有被frozen(即冷冻,不再做改动的动态代理实例)且是Eligbile(合适的),则把其添加到advisor中。根据配置决定插入位置。
			// Add our local Advisor to the existing proxy's Advisor chain...
			if (this.beforeExistingAdvisors) {
				advised.addAdvisor(0, this.advisor);
			}
			else {
			    advised.addAdvisor(this.advisor);
			}
			return bean;
		}
	}

	if (isEligible(bean, beanName)) {
	    // 如果是Eligible合适的,且还不是被代理的类,则创建一个代理类的实例并返回。
		ProxyFactory proxyFactory = prepareProxyFactory(bean, beanName);
		if (!proxyFactory.isProxyTargetClass()) {
			evaluateProxyInterfaces(bean.getClass(), proxyFactory);
		}
		proxyFactory.addAdvisor(this.advisor);
		customizeProxyFactory(proxyFactory);
		return proxyFactory.getProxy(getProxyClassLoader());
	}

	// No async proxy needed.
	return bean;
}
// 准备ProxyFactory对象
protected ProxyFactory prepareProxyFactory(Object bean, String beanName) {
	ProxyFactory proxyFactory = new ProxyFactory();
	proxyFactory.copyFrom(this);
	// 设置被代理的bean为target,这个bean是真实的bean。
	proxyFactory.setTarget(bean);
	return proxyFactory;
}

Spring 在对一个类进行 AOP 代理后,会为此类加上 Advised 接口,返回的动态代理对象都会带上 Advised 接口修饰,那么第一段逻辑判断 bean instanceof Advised 的目的就是判断是否已经是被动态代理的类,如果是,则为其添加一个 Advisor 增强器。

如果不是动态代理的对象,因为 @Async 要为方法增加代理,并转换为异步执行,故需要把原始 bean 转换为被 AOP 动态代理的 bean。也就是下面的逻辑。

关于 @Async 再多提一点:上面注册进去的 advisor 类型是 AsyncAnnotationAdvisor。其中包括了 PointCut,类型是 AnnotationMatchingPointcut,指定了只有 @Async 标记的方法或者类此 AOP 增强器才生效。还有一个 Advice,用于增强 @Async 标记的方法,转换为异步,类型是 AnnotationAsyncExecutionInterceptor,其中的 invoke 方法是真正调用真实方法的地方,大家有兴趣可以仔细研究其中的内容,这样就能摸清楚 @Async 方法的真实执行逻辑了。

相关组件上面都已经提及并进行了简单的分析,现在我们进入下一阶段,通过真正的执行逻辑来分析 this 调用不生效的原因。

2. 深入真实调用逻辑

@Async 大多数都是标记的类中的方法,故 AOP 的实现也多是基于 CGLIB 的,下面以 CGLIB 动态代理为例分析真实调用逻辑。

一个基于 CGLIB 的 AOP 动态代理 bean,真实的执行逻辑是在 DynamicAdvisedInterceptor 中:

public Object intercept(Object proxy, Method method, Object[] args, MethodProxy methodProxy) throws Throwable {
	Object oldProxy = null;
	boolean setProxyContext = false;
	Class<?> targetClass = null;
	Object target = null;
	try {
		if (this.advised.exposeProxy) {
		    // 需要则暴露
			// Make invocation available if necessary.
			oldProxy = AopContext.setCurrentProxy(proxy);
			setProxyContext = true;
		}
		// May be null. Get as late as possible to minimize the time we
		// "own" the target, in case it comes from a pool...
		// 重点:获取被代理的目标对象
		target = getTarget();
		if (target != null) {
			targetClass = target.getClass();
		}
		// 获取拦截器链
		List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);
		Object retVal;
		// Check whether we only have one InvokerInterceptor: that is,
		// no real advice, but just reflective invocation of the target.
		if (chain.isEmpty() && Modifier.isPublic(method.getModifiers())) {
			// We can skip creating a MethodInvocation: just invoke the target directly.
			// Note that the final invoker must be an InvokerInterceptor, so we know
			// it does nothing but a reflective operation on the target, and no hot
			// swapping or fancy proxying.
			// 如果链是空且是public方法,则直接调用
			Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
			retVal = methodProxy.invoke(target, argsToUse);
		}
		else {
			// We need to create a method invocation...
			// 否则创建一个CglibMethodInvocation以便驱动拦截器链
			retVal = new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();
		}
		// 处理返回值,同JDK动态代理
		retVal = processReturnType(proxy, target, method, retVal);
		return retVal;
	}
	finally {
		if (target != null) {
			releaseTarget(target);
		}
		if (setProxyContext) {
			// Restore old proxy.
			AopContext.setCurrentProxy(oldProxy);
		}
	}
}

注意上面真实调用的部分,在没有 advisor 的情况下,使用的其实是:

methodProxy.invoke(target, argsToUse)

在有代理的情况下,使用的是:

new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();

而在 CglibMethodInvocation 中,检查到调用链执行完之后,会调用真实的方法:invokeJoinpoint。在 CglibMethodInvocation 中,该方法的实现是

// CglibMethodInvocation中的实现
protected Object invokeJoinpoint() throws Throwable {
	if (this.publicMethod) {
		return this.methodProxy.invoke(this.target, this.arguments);
	}
	else {
		return super.invokeJoinpoint();
	}
}
// 父类实现是
protected Object invokeJoinpoint() throws Throwable {
	return AopUtils.invokeJoinpointUsingReflection(this.target, this.method, this.arguments);
}

可以看到调用方法时,传入的实例都是 target,这个 target 是从 DynamicAdvisedInterceptor 的 getTarget 方法中获得的,代码如下

protected Object getTarget() throws Exception {
	return this.advised.getTargetSource().getTarget();
}

而这个 advised 的 target 则是在 ProxyFactory 的实例方法中设置的:proxyFactory.setTarget (bean);

也就是说这个 target 其实是真实的被代理的 bean。

通过上面的分析,我们可以得到结论,在一个被动态代理的对象,在执行完 AOP 所有的增强逻辑之后,最终都会使用被代理对象作为实例调用真实的方法,即相当于调用了:target.method () 方法。由此得出结论,在 target.method () 方法中,this 引用必然是 target 自身,而不是生成的动态代理对象实例。

补充一下,Spring 在创建一个 Bean 之后,对其包装并生成动态代理对象都是后置的举动,故会先生成真实类的实例 bean,再动态创建动态代理 bean,在动态代理 bean 中,会持有真实的 bean 的实例。

就拿最上面的 @Async 代码实例举例,我们可以看到 this 其实是 AsyncService 的原始实例,而不是代理对象实例:AsyncService调试信息

总结: 因为 AOP 动态代理的方法真实调用,会使用真实被代理对象实例进行方法调用,故在实例方法中通过 this 获取的都是被代理的真实对象的实例,而不是代理对象自身

对于上面 Configuration 的类的调用,可参考如下例子,对比调试后可以更加深入的理解这个问题。

3. 解决this调用的几个替代方法

既然已知原因,那么解决的方法就有定向了,核心就是如何获得动态代理对象,而不是使用this去调用。

提供以下几种方法:

  1. 通过ApplicationContext来获得动态代理对象

复制代码@Component
public class AsyncService implements ApplicationContextAware {

    private ApplicationContext applicationContext;

    public void async1() {
        System.out.println("1:" + Thread.currentThread().getName());
        // 使用AppicationContext来获得动态代理的bean
        this.applicationContext.getBean(AsyncService.class).async2();
    }

    @Async
    public void async2() {
        System.out.println("2:" + Thread.currentThread().getName());
    }

    // 注入ApplicationContext
    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        this.applicationContext = applicationContext;
    }
}

执行结果是:

复制代码1:main
2:SimpleAsyncTaskExecutor-2
2:SimpleAsyncTaskExecutor-3

可以看到完美达到了我们的目的。同理是用BeanFactoryAware可达到同样的效果。

  1. 通过AopContext获取动态代理对象

复制代码@Component
public class AsyncService {

    public void async1() {
        System.out.println("1:" + Thread.currentThread().getName());
        ((AsyncService) AopContext.currentProxy()).async2();
    }

    @Async
    public void async2() {
        System.out.println("2:" + Thread.currentThread().getName());
    }

}

这种做法非常简洁,但是在默认情况下是不起作用的! 因为AopContext中拿不到currentProxy,会报空指针。

通过上面的动态代理执行源码的地方可以看到逻辑:

复制代码if (this.advised.exposeProxy) {
	// Make invocation available if necessary.
	oldProxy = AopContext.setCurrentProxy(proxy);
	setProxyContext = true;
}

而在ProxyConfig类中,有如下注释用来说明exposeProxy的作用,就是用于在方法中获取动态代理的对象的。

复制代码/**
 * Set whether the proxy should be exposed by the AOP framework as a
 * ThreadLocal for retrieval via the AopContext class. This is useful
 * if an advised object needs to call another advised method on itself.
 * (If it uses {@code this}, the invocation will not be advised).
 * <p>Default is "false", in order to avoid unnecessary extra interception.
 * This means that no guarantees are provided that AopContext access will
 * work consistently within any method of the advised object.
 */
public void setExposeProxy(boolean exposeProxy) {
	this.exposeProxy = exposeProxy;
}

即只有exposeProxy为true时,才会把proxy动态代理对象设置到AopContext上下文中,这个配置默认是false。那么这个配置怎么修改呢?

在xml时代,我们可以通过配置:

复制代码<aop:aspectj-autoproxy proxy-target-class="true" expose-proxy="true"/>  

来修改全局的暴露逻辑。

在基于注解的配置中,我们需要使用

复制代码@EnableAspectJAutoProxy(proxyTargteClass = true, exposeProxy = true)

来配置。

遗憾的是,对于@Async,如此配置下依然不能生效。因为@Async使用的不是AspectJ的自动代理,而是使用代码中固定的创建代理方式进行代理创建的。

如果是@Transactional事务注解的话, 则是生效的。具体生效机制是通过@EnableTransactionManagement注解中的TransactionManagementConfigurationSelector类声明,其中声明导入了AutoProxyRegistrar类,该类获取注解中proxy相关注解配置,并根据配置情况,在BeanDefinition中注册一个可用于自动生成代理对象的AutoProxyCreator:

复制代码AopConfigUtils.registerAutoProxyCreatorIfNecessary(registry);
public static BeanDefinition registerAutoProxyCreatorIfNecessary(BeanDefinitionRegistry registry, Object source) {
	return registerOrEscalateApcAsRequired(InfrastructureAdvisorAutoProxyCreator.class, registry, source);
}

而在@EnableAspectJAutoProxy注解中,@Import的AspectJAutoProxyRegistrar类又把这个BeanDefinition修改了类,同时修改了其中的exposeProxy属性。

AopConfigUtils.registerAspectJAnnotationAutoProxyCreatorIfNecessary(registry);
public static BeanDefinition registerAspectJAnnotationAutoProxyCreatorIfNecessary(BeanDefinitionRegistry registry) {
	return registerAspectJAnnotationAutoProxyCreatorIfNecessary(registry, null);
}
public static BeanDefinition registerAspectJAnnotationAutoProxyCreatorIfNecessary(BeanDefinitionRegistry registry, Object source) {
	return registerOrEscalateApcAsRequired(AnnotationAwareAspectJAutoProxyCreator.class, registry, source);
}

后面替换掉了前面的AutoProxyCreator,替换逻辑是使用优先级替换,优先级分别为:

复制代码APC_PRIORITY_LIST.add(InfrastructureAdvisorAutoProxyCreator.class);
APC_PRIORITY_LIST.add(AspectJAwareAdvisorAutoProxyCreator.class);
APC_PRIORITY_LIST.add(AnnotationAwareAspectJAutoProxyCreator.class);

这个逻辑都在registerOrEscalateApcAsRequired中,读者可以自己再看一下。

因为@Transactional注解和AspectJ相关注解的生成动态代理类都是使用的同一个Bean即上面的AutoProxyCreator处理的,该bean的name是org.springframework.aop.config.internalAutoProxyCreator,他们公用相同的属性,故对于@Transactional来说,@EnableAspectJAutoProxy的属性exposeProxy=true也是生效的。但是@Async的注解生成的代理类并不是通过这个autoProxyCreator来生成的,故不能享受到上面的配置。

基于上面的源码,我们可以得到第三种处理方法

在某个切入时机,手动执行AopConfigUtils.forceAutoProxyCreatorToExposeProxy(registry);静态方法,当然前提是有一个BeanDefinitionRegistry,且时机要在BeanDefinition已经创建且动态代理对象还没有生成时调用。

使用这种方式,无需使用@EnableAspectJAutoProxy即可。

这种方式同样不适用于@Async,适用于@Transactional。

手动修改各种BeanPostProcessor的属性

以@Async为例,其通过AsyncAnnotationBeanPostProcessor来生成动态代理类,我们只要在合适时机即该BPP已创建,但是还未被使用时,修改其中的exposeProxy属性,使用AsyncAnnotationBeanPostProcessor.setExposeProxy(true)即可。

这种方式要针对性的设置特定的bean的exposeProxy属性true。适用于@Async,观察原理可以知道3和4其实核心都是相同的,就是设置AutoProxyCreater的exposed属性为true。AsyncAnnotationBeanPostProcessor其实也是一个AutoProxyCreater,他是ProxyProcessorSupport的子类。

对于@Async可以使用1、4方式,对于@Transactional则可以使用这四种任意方式。

欢迎大家补充其他方法。

4. 是否可以做到this调用使动态代理生效

基于我们的推测,如果this引用是动态代理对象的话,则this调用其实是可以调用到父类的方法的,只要调用的是父类方法,那么在父类重写的方法中加入的动态代理拦截就是可以生效的。此种场景在Spring中是否存在呢?答案是肯定的,就在Spring提供的@Configuration配置类中,就有这种场景的应用,下面见示例:

复制代码@Configuration
public class TestConfig {
    
    @Bean
    public Config config() {
        return new Config();
    }
    
    @Bean
    public ConfigOut configOut() {
        Config c1 = this.config();
        Config c2 = this.config();
        System.out.println(c1 == c2);
        ConfigOut configOut = new ConfigOut(this.config());
        return configOut;
    }

    public static class Config {}
    
    public static class ConfigOut {
        
        private Config config;
        
        private ConfigOut(Config config) {
            this.config = config;
        }
        
    }
    
}

在configOut方法中加入断点,调试观察c1与才 的值,也即this.config()返回的值,可以看到c1和c2是同一个对象引用,而不是每次调用方法都new一个新的对象。 调试Config类截图.png

那么这里是怎么做到this调用多次都返回同一个实例的呢?我们继续跟踪调试断点,查看整体的调用堆栈,发现这个方法configOut的调用处以及config方法的真实调用处是在ConfigurationClassEnhancer的内部类BeanMethodInterceptor中,为什么是这个方法呢?因为真实的Configuration类被动态替换为基于CGLIB创建的子类了。而这个@Configuration类的处理,是基于ConfigurationClassPostProcessor这个BeanFactoryPostProcessor处理器来做的,在ConfigurationClassPostProcessor中的postProcessBeanDefinitionRegistry方法中,检查所有的bean,如果bean是被@Configuration、@Component、@ComponentScan、@Import、@ImportResource其中一个标注的,那么此类就会被视为Configuration类。在postProcessBeanDefinition方法中,会把@Configuration类动态代理为一个新类,使用CGLIB的enhancer来增强Configuration类。使用ConfigurationClassEnhancer的enhance方法处理为原有类的子类,参考代码:

/**
 * Loads the specified class and generates a CGLIB subclass of it equipped with
 * 加载特殊的Configuration类时,为其生成一个CGLIB的子类
 * container-aware callbacks capable of respecting scoping and other bean semantics.
 * 以便实现对@Bean方法的拦截或者增强
 * @return the enhanced subclass
 */
public Class<?> enhance(Class<?> configClass, ClassLoader classLoader) {
	if (EnhancedConfiguration.class.isAssignableFrom(configClass)) {
	    // 如果已经是被增强的Configuration,则直接跳过
		if (logger.isDebugEnabled()) {
			logger.debug(String.format("Ignoring request to enhance %s as it has " +
					"already been enhanced. This usually indicates that more than one " +
					"ConfigurationClassPostProcessor has been registered (e.g. via " +
					"<context:annotation-config>). This is harmless, but you may " +
					"want check your configuration and remove one CCPP if possible",
					configClass.getName()));
		}
		return configClass;
	}
	// 否则生成增强后的新的子类
	Class<?> enhancedClass = createClass(newEnhancer(configClass, classLoader));
	if (logger.isDebugEnabled()) {
		logger.debug(String.format("Successfully enhanced %s; enhanced class name is: %s",
				configClass.getName(), enhancedClass.getName()));
	}
	return enhancedClass;
}

/**
 * Creates a new CGLIB {@link Enhancer} instance.
 * 创建增强的CGLIB子类
 */
private Enhancer newEnhancer(Class<?> superclass, ClassLoader classLoader) {
	Enhancer enhancer = new Enhancer();
	enhancer.setSuperclass(superclass);
	// 增加接口以标记是被增强的子类,同时增加setBeanFactory方法,设置内部成员为BeanFactory。
	enhancer.setInterfaces(new Class<?>[] {EnhancedConfiguration.class});
	enhancer.setUseFactory(false);
	enhancer.setNamingPolicy(SpringNamingPolicy.INSTANCE);
	// BeanFactoryAwareGeneratorStrategy生成策略为生成的CGLIB类中添加成员变量?beanFactory
	// 同时基于接口EnhancedConfiguration的父接口BeanFactoryAware中的setBeanFactory方法,设置此变量的值为当前Context中的beanFactory
	// 该BeanFactory的作用是在this调用时拦截该调用,并直接在beanFactory中获得目标bean。
	enhancer.setStrategy(new BeanFactoryAwareGeneratorStrategy(classLoader));
	// 设置CALLBACK_FILTER,
	enhancer.setCallbackFilter(CALLBACK_FILTER);
	enhancer.setCallbackTypes(CALLBACK_FILTER.getCallbackTypes());
	return enhancer;
}

// 增强时要使用的filters
// The callbacks to use. Note that these callbacks must be stateless.
private static final Callback[] CALLBACKS = new Callback[] {
        // 用于拦截@Bean方法的调用,并直接从BeanFactory中获取目标bean,而不是通过执行方法。
		new BeanMethodInterceptor(),
		// 用于拦截BeanFactoryAware接口中的setBeanFactory方法的嗲用,以便设置?beanFactory的值。
		new BeanFactoryAwareMethodInterceptor(),
		// 不做任何操作
		NoOp.INSTANCE
};

/**
 * Uses enhancer to generate a subclass of superclass,
 * ensuring that callbacks are registered for the new subclass.
 * 设置callbacks到静态变量中,因为还没有实例化,所以只能放在静态变量中。
 */
private Class<?> createClass(Enhancer enhancer) {
	Class<?> subclass = enhancer.createClass();
	// Registering callbacks statically (as opposed to thread-local)
	// is critical for usage in an OSGi environment (SPR-5932)...
	Enhancer.registerStaticCallbacks(subclass, CALLBACKS);
	return subclass;
}

可以看到这里的callbacks是注册到生成的子类的static中,这里只生成class而不实例化。

把此类设置到BeanDefinition中的beanClass属性中,在BeanDefinition初始化时会自动初始化子类。

上面的关键是CALLBACKS、CALLBACK_FILTER,分别代表增强器和增强器的过滤器。

关于Configuration类的CGLIB动态代理创建可以与SpringAOP体系创建的CGLIB动态代理做一个对比,区别是这里的动态代理的CALLBACKS和CALLBACK_FILTER。

这里我们以上面提到的BeanMethodInterceptor为例,来说明他的作用,以及this调用在这种情况下可以被动态代理拦截的原因。代码如下:

/**
 * enhancedConfigInstance: 被CGLIB增强的config类的实例,即CGLIB动态生成的子类的实例
 * beanMethod : @Bean标记的方法,即当前调用的方法,这个是通过CallbackFilter的accept方法筛选出来的,只可能是@Bean标注的方法。
 * beanMethodArgs : 方法调用的参数
 * cglibMethodProxy : cglib方法调用的代理,可以用来直接调用父类的真实方法。
*/
@Override
public Object intercept(Object enhancedConfigInstance, Method beanMethod, Object[] beanMethodArgs,
			MethodProxy cglibMethodProxy) throws Throwable {
    // 通过enhancedConfigInstance中cglib生成的成员变量?beanFactory获得beanFactory。
	ConfigurableBeanFactory beanFactory = getBeanFactory(enhancedConfigInstance);
	// 确认真实的beanName,用于在beanFactory中获得bean实例
	String beanName = BeanAnnotationHelper.determineBeanNameFor(beanMethod);

	// Determine whether this bean is a scoped-proxy
	// 后面这个是确认是否是scoped作用域的bean,这里暂时不考虑,后续文章详细分析Scoped相关的逻辑和bean。
	Scope scope = AnnotatedElementUtils.findMergedAnnotation(beanMethod, Scope.class);
	if (scope != null && scope.proxyMode() != ScopedProxyMode.NO) {
		String scopedBeanName = ScopedProxyCreator.getTargetBeanName(beanName);
		if (beanFactory.isCurrentlyInCreation(scopedBeanName)) {
			beanName = scopedBeanName;
		}
	}

	// To handle the case of an inter-bean method reference, we must explicitly check the
	// container for already cached instances.
	// 拦截内部bean方法的调用,检查bean实例是否已经生成

	// First, check to see if the requested bean is a FactoryBean. If so, create a subclass
	// proxy that intercepts calls to getObject() and returns any cached bean instance.
	// This ensures that the semantics of calling a FactoryBean from within @Bean methods
	// is the same as that of referring to a FactoryBean within XML. See SPR-6602.
	// 检查是否是FactoryBean,当是FactoryBean时,即使是this调用也不能生成多次
	// 更特殊的,调用FactoryBean的getObject方法时,也不能生成多次新的Bean,否则取到的bean就是多个了,有违单例bean的场景。
	// 所以这里判断如果当前方法返回的bean,如果是FactoryBean的话,对FactoryBean进行代理
	// 代理的结果是拦截factoryBean实例的getObject方法,转化为通过BeanFactory的getBean方法来调用
	if (factoryContainsBean(beanFactory, BeanFactory.FACTORY_BEAN_PREFIX + beanName) &&
			factoryContainsBean(beanFactory, beanName)) {
		// 上面加入BeanFactory.FACTORY_BEAN_PREFIX + beanName用来判断当前bean是否是一个FactoryBean。在BeanFactory中是通过FACTORY_BEAN_PREFIX前缀来区分当前要判断的目标类型的,
		// 如果是FACTORY_BEAN_PREFIX前缀的beanName,则获取之后会判断是否是FactoryBean,是则为true,否则为false。
		// 同时还判断了当前的Bean是否是在创建中,只有不是在创建中,才会返回true。第一个拿FactoryBean的name去判断,则肯定不在创建中。第二个的判断才是真正生效的可判断出是否在创建中的方法。
		Object factoryBean = beanFactory.getBean(BeanFactory.FACTORY_BEAN_PREFIX + beanName);
		// 只有不在创建中,才能调用BeanFactory去获取或者创建,否则会无限递归调用。
		// 上面的调用获取时,才会进行真正的初始化,实例化时还会再进一次这个方法,但是并不会执行到这个逻辑中,因为再进入时,会被标记为正在创建。真正的初始化时调用@Bean方法进行的,是在下面的逻辑中。
		if (factoryBean instanceof ScopedProxyFactoryBean) {
			// Scoped proxy factory beans are a special case and should not be further proxied
		}
		else {
			// It is a candidate FactoryBean - go ahead with enhancement
			return enhanceFactoryBean(factoryBean, beanMethod.getReturnType(), beanFactory, beanName);
		}
	}

	if (isCurrentlyInvokedFactoryMethod(beanMethod)) {
	    // 上面这个用于判断当前的工厂方法,也就是@Bean标注的方法是否是在调用中。如果是在调用中,则说明需要真正的实例化了,此时调用父类真是方法来创建实例。
		// The factory is calling the bean method in order to instantiate and register the bean
		// (i.e. via a getBean() call) -> invoke the super implementation of the method to actually
		// create the bean instance.
		if (logger.isWarnEnabled() &&
				BeanFactoryPostProcessor.class.isAssignableFrom(beanMethod.getReturnType())) {
		    // 如果是BeanFactoryPostProcessor类型的话则提出警告,表明可能并不能正确执行BeanFactoryPostProcessor的方法。
			logger.warn(String.format("@Bean method %s.%s is non-static and returns an object " +
							"assignable to Spring's BeanFactoryPostProcessor interface. This will " +
							"result in a failure to process annotations such as @Autowired, " +
							"@Resource and @PostConstruct within the method's declaring " +
							"@Configuration class. Add the 'static' modifier to this method to avoid " +
							"these container lifecycle issues; see @Bean javadoc for complete details.",
					beanMethod.getDeclaringClass().getSimpleName(), beanMethod.getName()));
		}
		// 调用父类真实方法实例化。
		return cglibMethodProxy.invokeSuper(enhancedConfigInstance, beanMethodArgs);
	}
    // 这个方法尝试从beanFactory中获得目标bean,这样便可另所有此方法调用获得bean最终都是从beanFactory中获得的,达到了单例的目的。
	return obtainBeanInstanceFromFactory(beanMethod, beanMethodArgs, beanFactory, beanName);
	// 在Bean的方法A使用this引用调用方法B时,会先进入一次这个方法的逻辑,此时因为还没真正进行实例化,
	// isCurrentlyInvokedFactoryMethod(beanMethod)得到的结过是false,故会调用obtainBeanInstanceFromFactory,此时会从beanFactory中获得bean。
	// 在获得Bean时,会再次调用B方法,因为这个Bean需要调用@Bean的方法才能生成。调用前先打上正在调用的标记,同时再次进入这个方法逻辑,此时上面判断isCurrentlyInvokedFactoryMethod结过为true,调用父类方法进行真实的实例化。
}

/**
 * 该方法为FactoryBean返回被代理的新实例,新的实例拦截getObject方法,并从beanFactory中获得单例bean。
 */
private Object enhanceFactoryBean(final Object factoryBean, Class<?> exposedType,
		final ConfigurableBeanFactory beanFactory, final String beanName) {

	try {
		Class<?> clazz = factoryBean.getClass();
		boolean finalClass = Modifier.isFinal(clazz.getModifiers());
		boolean finalMethod = Modifier.isFinal(clazz.getMethod("getObject").getModifiers());
		// 判断真实FactoryBean的类型和getObject方法,如果是final的,说明不能通过CGLIB代理,则尝试使用JDK代理
		if (finalClass || finalMethod) {
			if (exposedType.isInterface()) {
			    // 如果方法返回类型,即exposedType是接口,则这个接口一般都是FactoryBean,则通过jdk动态代理创建代理
				if (logger.isDebugEnabled()) {
					logger.debug("Creating interface proxy for FactoryBean '" + beanName + "' of type [" +
							clazz.getName() + "] for use within another @Bean method because its " +
							(finalClass ? "implementation class" : "getObject() method") +
							" is final: Otherwise a getObject() call would not be routed to the factory.");
				}
				return createInterfaceProxyForFactoryBean(factoryBean, exposedType, beanFactory, beanName);
			}
			else {
			    // 不是接口就没办法了,只能直接返回原始的factoryBean,如果在这个factoryBean里getObject生成了新对象,多次调用生成的结果bean将不会是同一个实例。
				if (logger.isInfoEnabled()) {
					logger.info("Unable to proxy FactoryBean '" + beanName + "' of type [" +
							clazz.getName() + "] for use within another @Bean method because its " +
							(finalClass ? "implementation class" : "getObject() method") +
							" is final: A getObject() call will NOT be routed to the factory. " +
							"Consider declaring the return type as a FactoryBean interface.");
				}
				return factoryBean;
			}
		}
	}
	catch (NoSuchMethodException ex) {
		// No getObject() method -> shouldn't happen, but as long as nobody is trying to call it...
	}
    // 可以使用CGLIB代理类。
	return createCglibProxyForFactoryBean(factoryBean, beanFactory, beanName);
	// 假设A方法调用了@Bean的B方法,B方法返回FactoryBean实例
	// 那么在A调用B时,会先进入BeanMethodInterceptor.intercept方法
	// 在方法中判断目标bean是一个FactoryBean,且不是在创建中,则调用beanFactory的getBean尝试获取目标bean。
	// 在获取的过程中,最终又会执行方法B,此时被拦截再次进入这个intercept方法
	// 由于标记为创建中,故这里会进入下面的创建中逻辑,通过invokeSuper调用了真实的方法逻辑返回真实的FactoryBean。
	// 这个真实的FactoryBean返回之后,在第一次的intercept方法中,对这个FactoryBean实例进行代理,返回一个被代理的FactoryBean对象给方法A中的逻辑使用,这样就可以保证在A中调用FactoryBean.getObject时拿到的是beanFactory的bean实例了。
}

通过BeanMethodInterceptor.intercept方法,我们可以看到,真实的方法调用是通过cglibMethodProxy.invokeSuper(enhancedConfigInstance, beanMethodArgs)来执行的,enhancedConfigInstance是动态代理产生的子类的实例,这里直接调用该对象的父类方法,即相当于调用的真实方法,这一点与Spring AOP体系中的把真实对象target作为真实调用实例来调用是有区别的,也就是这个区别,给this调用带来的上面的特性。

即在这种情况下this都是被CGLIB动态代理产生的子类的实例,在调用this.method()时,其实是调用了子类实例的该方法,此方法可以被方法拦截器拦截到,在拦截的逻辑中做一定的处理,如果需要调用真实对象的相应方法,直接使用invokeSuper来进行父类方法调用,而不是传入真实被动态代理对象的实例来进行调用。真实对象其实并没有创建,也就是说对应于Spring AOP,其中的target是不存在的,只有子类对象动态代理自身的实例,而没有真实对象实例。

由此我们便明了了this调用被动态拦截的实现方式。

对于上面Configuration的类的调用,可参考如下例子,对比调试后可以更加深入的理解这个问题。

复制代码import org.springframework.beans.factory.FactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class TestConfig {

    @Bean
    public ConfigOut configOut() {
        Config c1 = this.config();
        Config c2 = this.config();
        // 这里返回同一个实例
        System.out.println(c1 == c2);
        ConfigOut configOut = new ConfigOut(this.config());
        FactoryBean ob1 = this.objectFactoryBean();
        FactoryBean ob2 = this.objectFactoryBean();
        // 这里也是 同一个实例
        System.out.println(ob1 == ob2);
        MyObject myObject1 = this.objectFactoryBean().getObject();
        MyObject myObject2 = this.objectFactoryBean().getObject();
        // 如果objectFactoryBean方法返回类型为FactoryBean则这两个相同
        // 如果是ObjectFactoryBean则两个不相同,上面已分析过原因
        System.out.println(myObject1 == myObject2);
        return configOut;
    }

    @Bean
    public Config config() {
        return new Config();
    }

    @Bean
    public FactoryBean objectFactoryBean() {
        return new ObjectFactoryBean();
    }

    public static class Config {}

    public static class ConfigOut {

        private Config config;

        private ConfigOut(Config config) {
            this.config = config;
        }

    }

    public static final class ObjectFactoryBean implements FactoryBean<MyObject> {

        @Override
        public final MyObject getObject() {
            return new MyObject();
        }

        @Override
        public Class<?> getObjectType() {
            return MyObject.class;
        }

        @Override
        public boolean isSingleton() {
            return true;
        }
    }

    public static class MyObject {}

}

后记

本文根据实际场景,详细的分析了 this 调用导致 AOP 失效的原因,以及如何解决这个问题。并扩展了 this 调用可使 AOP 生效的场景。只要大家能理解到原理面,应该都能够分析出来原因。平时一些需要遵守的代码规范,在原理层面都是有其表现和原因的,分析真实原因得到最终结论,这个过程是对知识的升华过程,希望大家能够看到开心。